Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Nat Chem ; 16(1): 79-88, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37653230

RESUMO

Darwinian evolution involves the inheritance and selection of variations in reproducing entities. Selection can be based on, among others, interactions with the environment. Conversely, the replicating entities can also affect their environment generating a reciprocal feedback on evolutionary dynamics. The onset of such eco-evolutionary dynamics marks a stepping stone in the transition from chemistry to biology. Yet the bottom-up creation of a molecular system that exhibits eco-evolutionary dynamics has remained elusive. Here we describe the onset of such dynamics in a minimal system containing two synthetic self-replicators. The replicators are capable of binding and activating a co-factor, enabling them to change the oxidation state of their environment through photoredox catalysis. The replicator distribution adapts to this change and, depending on light intensity, one or the other replicator becomes dominant. This study shows how behaviour analogous to eco-evolutionary dynamics-which until now has been restricted to biology-can be created using an artificial minimal replicator system.


Assuntos
Luz , Catálise
2.
J Am Chem Soc ; 145(30): 16889-16898, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37482957

RESUMO

Self-replicating molecules provide a simple approach for investigating fundamental processes in scenarios of the emergence of life. Although homochirality is an important aspect of life and of how it emerged, the effects of chirality on self-replicators have received only little attention so far. Here, we report several self-assembled self-replicators with enantioselectivity that emerge spontaneously and grow only from enantiopure material. These require a relatively small number of chiral units in the replicators (down to eight) and in the precursors (down to a single chiral unit), compared to the only other enantioselective replicator reported previously. One replicator was found to incorporate material of its own handedness with high fidelity when provided with a racemic mixture of precursors, thus sorting (L)- and (D)-precursors into (L)- and (D)-replicators. Systematic studies reveal that the presence or absence of enantioselectivity depends on structural features (ring size of the replicator) that appear to impose constraints on its supramolecular organization. This work reveals new aspects of the little researched interplay between chirality and self-replication and represents another step toward the de novo synthesis of life.

3.
Chem Sci ; 13(48): 14300-14304, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36545148

RESUMO

The complex interplay between systems and their environment plays an important role in processes ranging from self-assembly to evolution. Polymorphism, where, from the same ingredients different products can be formed, is likely to be an important enabler for evolutionary adaptation. Environmental pressures may induce polymorphic behaviour, where different pressures result in different structural organisation. Here we show that by combining covalent and non-covalent bond formation three distinct polymorphs can emerge from the same small dynamic molecular network: vesicular aggregates, self-replicating fibres and nanoribbons, depending on the nature of the solvent environment. Additionally, a particular set of conditions allows the transient co-existence of both vesicles and fibres.

4.
J Am Chem Soc ; 144(7): 3074-3082, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35139307

RESUMO

Self-replicating systems play an important role in research on the synthesis and origin of life. Monitoring of these systems has mostly relied on techniques such as NMR or chromatography, which are limited in throughput and demanding when monitoring replication in real time. To circumvent these problems, we now developed a pattern-generating fluorescent molecular probe (an ID-probe) capable of discriminating replicators of different chemical composition and monitoring the process of replicator formation in real time, giving distinct signatures for starting materials, intermediates, and final products. Optical monitoring of replicators dramatically reduces the analysis time and sample quantities compared to most currently used methods and opens the door for future high-throughput experimentation in protocell environments.

5.
J Am Chem Soc ; 143(19): 7388-7393, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33955219

RESUMO

The ability of molecules and systems to make copies of themselves and the ability of molecules to fold into stable, well-defined three-dimensional conformations are of considerable importance in the formation and persistence of life. The question of how, during the emergence of life, oligomerization reactions become selective and channel these reactions toward a small number of specific products remains largely unanswered. Herein, we demonstrate a fully synthetic chemical system where structurally complex foldamers and self-replicating assemblies emerge spontaneously and with high selectivity from pools of oligomers as a result of forming noncovalent interactions. Whether foldamers or replicators form depends on remarkably small differences in building block structures and composition and experimental conditions. We also observed the dynamic transformation of a foldamer into a replicator. These results show that the structural requirements/design criteria for building blocks that lead to foldamers are similar to those that lead to replicators. What determines whether folding or replication takes place is not necessarily the type of noncovalent interaction, but only whether they occur intra- or intermolecularly. This work brings together, for the first time, the fields of replicator and foldamer chemistry.

6.
Ultrason Sonochem ; 42: 97-111, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29429739

RESUMO

An advanced sol-gel method is developed via combined ultrasound-microwave irradiation and utilized for the crystallization of pristine and samarium doped zinc oxide nanorods. Organic structure directing agents directed one dimensional growth and air-annealing was applied as post-thermal treatment. Microstructural, optical, and solid state survey was pursued by PXRD, FESEM, TEM, EDS, FTIR, DRS, PL, micro-Raman, H2-TPR, and ESR techniques. Phase analysis by diffraction patterns confirmed the efficacy of irradiation strategy as it improves the crystallinity degree, expedites the hexagonal close pack morphology, and conducts lattice imperfection. Accordingly, aspect ratio and electronic evolution parallel to dopant content is favored. Electron microscopy demonstrated the flake-like rearrangement of nanorods as well as a structure-related growth where a direct proportion exists between atomic packing factor in lattice and aspect ratio. Textural investigation by EDS and FTIR rejected the presence of any impurity verifying an integrated composition. Reflectance and luminescence spectra exhibited characteristic optical behavior with shifts corresponding to dopant concentration. Also, band gap energies increased with samarium addition depicting an opposite trend with respect to unit cell variation. Finally, Raman, TPR, and ESR spectra provided detailed dopant-dependent trends on the internal solid state and defect chemistry of the nanorods. In this regard, maximum shifts in E2high and E1LO phonon modes duly correlated with the vibrations of zinc and oxygen atoms, surface oxygen and bulk ZnO reduction bands, emergence and alteration of samarium centers, along with the dominance of zinc and oxygen vacancies were all resulted due to the utmost lattice imperfection in SZO1.

7.
J Colloid Interface Sci ; 478: 271-9, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27309947

RESUMO

Zinc oxide nanocubes were surveyed for their destructive turn-over to decontaminate 2-chloro ethyl phenyl sulfide, a sulfur mustard simulant. Prior to the reaction, nanocubes were prepared through sol-gel method using monoethanolamine, diethylene glycol, and anhydrous citric acid as the stabilizing, cross linking/structure directing agents, respectively. The formation of nanoscale ZnO, the cubic morphology, crystalline structure, and chemical-adsorptive characteristics were certified by FESEM-EDS, TEM-SAED, XRD, FTIR, BET-BJH, H2-TPR, and ESR techniques. Adsorption and destruction reactions were tracked by GC-FID analysis in which the effects of polarity of the media, reaction time, and temperature on the destructive capability of the surface of nanocubes were investigated and discussed. Results demonstrated that maximum neutralization occurred in n-heptane solvent after 1/2h at 55°C. Kinetic study construed that the neutralization reaction followed the pseudo-second order model with a squared correlation coefficient and rate constant of 0.9904 and 0.00004gmg(-1)s(-1), respectively. Furthermore, GC-MS measurement confirmed the formation of 2-hydroxy ethyl phenyl sulfide (2-HEPS) and phenyl vinyl sulfide (PVS) as neutralization products that together with Bronsted and Lewis acid/base approaches exemplify the role of hydrolysis and elimination mechanisms on the surface of zinc oxide nanocubes.

8.
Talanta ; 75(1): 56-62, 2008 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-18371847

RESUMO

The need for highly reliable methods for the determination of trace and ultratrace elements has been recognized in analytical chemistry and environmental science. A simple and powerful microextraction technique was used for the detection of the lead ultratrace amounts in water samples using the dispersive liquid-liquid microextraction (DLLME), followed by the electrothermal atomic absorption spectrometry (ET AAS). In this microextraction technique, a mixture of 0.50 mL acetone (disperser solvent), containing 35 microL carbon tetrachloride (extraction solvent) and 5 microL diethyldithiophosphoric acid (chelating agent), was rapidly injected by syringe into the 5.00 mL water sample, spiked with lead. In this process, the lead ions reacted with the chelating agent and were extracted into the fine droplets of CCl(4). After centrifugation (2 min at 5000 rpm), the fine CCl4 droplets were sedimented at the bottom of the conical test tube (25+/-1 microL). Then, 20 microL from the sedimented phase, containing the enriched analyte, was determined by ET AAS. The next step was the optimization of various experimental conditions, affecting DLLME, such as the type and the volume of the extraction solvent, the type and the volume of the disperser solvent, the extraction time, the salt effect, pH and the chelating agent amount. Moreover, the effect of the interfering ions on the analytes recovery was also investigated. Under the optimum conditions, the enrichment factor of 150 was obtained from only a 5.00 mL water sample. The calibration graph was linear in the range of 0.05-1 microg L(-1) with the detection limit of 0.02 microg L(-1). The relative standard deviation (R.S.D.) for seven replicate measurements of 0.50 microg L(-1) of lead was 2.5%. The relative lead recoveries in mineral, tap, well and sea water samples at the spiking level of 0.20 and 0.40 microg L(-1) varied from 93.5 to 105.0. The characteristics of the proposed method were compared with the cloud point extraction (CPE), the liquid-liquid extraction, the solid phase extraction (SPE), the on-line solid phase extraction (SPE) and the co-precipitation, based on bibliographic data. The main DLLME advantages combined with ET AAS were simplicity of operation, rapidity, low cost, high-enrichment factor, good repeatability, low consumption of extraction solvent, requiring a low sample volume (5.00 mL).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...